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PNC

Physical Layer Network Coding (PNC): decode the modulo-two sum of the
two transmitted signals.

Can enhance the throughput of a binary-input two-way relay channel
(TWRC) [1]

Approach the capacity upper bound of a Gaussian TWRC within % bits [2]
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Compute-and-Forward

* Nazer-Gastpar proposed a new strategy: Compute-and-forward (CF) for a
Gaussian multiple access relay channel (MARC).

* CFis an extension of PNC: multiple-user/g-ary input/fading

* Keyidea:
— relay decodes a linear function of the transmitted messages
— rather than decoding each user’s message individually

w—> & -"=Z;1.1hf X+ ll’
W2 & > ;uizsgn —>{ scaling[—>| D =>1
A : A
a
wWL—> & “=Z.-1_1".' b

3. B. Nazer and M. Gastpar, Compute-and-Forward: Harnessing Interference through Structured Codes, IEEE
Trans. on Information Theory, 2011.



Compute-and-Forward

L
y=2 hx+z

to a linear (integer) function (network coding)
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Map the noisy linear C-combined signal from the channel

Underlying principle: based on linear nested lattice codes

— The integer combinations of the lattice points (codewords) is another

lattice point (codeword).

— It can be mapped back to the linear combinations of the messages u over

the finite field.
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Lattice

* Alattice A is a discrete subset of n-space that has the group
property.

* Aninteger lattice: Z"

e A lattice can be viewed as the linear transformation of the
integer lattice Z" by a generator matrix B over R™",

A =BZ"
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Lattice

By the group property, any translation A+x by a lattice point x
is just A, i.e. shift invariant.

Closed under addition: A X €A = A+ €A
Symmetric: A€A = -Ae€A
Implies: Lattice is geometrically uniform in Euclidean distance

— Every point has the same number of neighbors at each distance.
— All decision regions of a minimum-distance decoder are congruent.
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Lattice

* Nearest neighbor quantizer (decoder): send a vector x to a
nearest lattice point in terms of the Euclidean distance.

Di(x) = argmingc,|[x — Al

 The Voronoi region of a lattice point: the set of all points that
guantize to the lattice point.

 Fundamental Voronoiregion V: the sets of points quantize to
the origin. Y = {x:Qx(x) =0}




Nested Lattice

Consider a sublattice A’ of lattice A. They are nested as A'C A.

— Fine lattice A
— Coarse lattice N’

Nested Lattice code: The set of lattice points of the fine lattice A
in the fundamental Voronoi region v of the coarse lattice A\'.

The region v is also called the shaping

region of the code.

The code rate
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Nested Lattice Encoding

Define a linear code generator G and Lattice generator B
Generate codeword Gw for message w

Map the scaled down version rGw into the fundamental Voronoi region
(hypercube) VY =[-1/2,1/2)"

Generate fine lattice t=BrGw . .
Generate coarse lattice A'=BZ" .
Generate a random dither vector d .
uniformly over V . .

Transmit a dithered codeword
x=[t+d] mod A’




Nested Lattice Encoding/Decoding

Encoders use the same nested lattice codes, transmit dithered codewords
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Recovers linear equation (network code)

Eqiti] mod A'
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Compute-and-Forward

Effective noise: n = E (ah-q)X, +az

Minimizing the effective noise by choosing « to be MMSE coefficient
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Compute-and-Forward
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Compute-and-Forward

h=[2.1 1.4]

a=[3 2]

Effective Noise: N+P|h-a|?

From: Nazer/Gastpar



Compute-and-Forward

oh=[02.1 al.4]

a=[3 2]

Effective Noise: a’?N+P|ah-a|?

From: Nazer/Gastpar
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Compute-and-Forward

Map back to equation of message symbols over the field:

oh=[02.1 al.4]

a=|3 2 ]

: : . y2 _al2
Effective Noise: a’N+P|ah-a| From: Nazer/Gastpar



Compute-and-Forward

A theoretic guideline as it assumes an infinite sequence of good
lattice partition.

Map message to a lattice point
t, = ¢(Wi)
Transmit dithered codeword
X, =[tl. +dl.]mod A’
The decoder recovers
Eqiti mod A’

Map it back to the linear combination of the messages
E aw, =¢" (E g;t. mod A')
Question:

— How to design the mapping functions?
— How to implement modulo operation in n-space?



Lattice Network Coding

A general algebraic framework proposed by Feng/Silva/Kschischang

to design and implement practical compute-and-forward scheme using finite
dimension lattice partition.

It makes direct connection between the CF strategy and module theory.

Using the algebraic properties of principal ideal domain (PID), it links
the C-linear combination operation performed by the channel

y=2hixl.+z

and the R-linear combination operation in the message space for the network
codin
: S aw,

]

C. Feng, D. Silva and F. R Kschischang, An algebraic Approach to Physical-layer Network Coding, submitted to IEEE Trans. On
Information Theory, 2011.



Lattice Network Coding

Let R be a discrete subring of C forming a principal ideal domain PID
(e.g., integer numbers, Gaussian integers Z[i])

Define an R-lattice A = {rGA :rER”} (R-module) and its sublattice of A.

The set of all the cosets of A’ in A, denoted by A/A’, forms an R-lattice
partition of A. The message space W=A/A\’". (Figure)

Define a linear labelling
o AA/N
taking a lattice point A in A, map to a coset A+ A" of A’ in A.

Define an embedding map " = m b m ® =
d): WA m = m A = =
embedding each message to a = A A = = =

lattice point in the same coset. = = = A = &=




Lattice Network Coding

* The encoder maps a message w=A+A\’ to a coset leader, using the embedding

map.
X; = g(wi ) = ¢(Wz‘)_DA' (¢(Wi ))
* The decoder estimates an R-linear combination
qu'xi
from the C-linear combination

y=2hl.xl.+z

and maps the R-linear combination to a coset A/A’ by using linear labelling

Eal.wl.=¢_1(DA(0{y)) = = -A- = =

1

* Risasubring of C, the linear labelling inducesanature = = = | A = =
bridge between the C-linear combining —=—= A A = =

and the R-linear combining in the message space. = = = A = =




Lattice Network Coding

How to construct linear labelling ¢1: ASA/N ?

Theorem (Feng/Silva/Kschischang)

Let R be a PID and A/’ be a finite R-lattice partition. There exist generator matrices for A
and A’ satisfying

- diag(yrl,L ,Jl’k) 0
) O In—k

A!

where r; |, |-+ | T, are the invariant factors of A/A.
And the linear labelling is represented by a direct sum of modules R/

¢_1: A—=A/AN'=R/(m)®R/(m,)®L ® R/(x,)
¢_1(rGA)=(7i+JT1,I’2+JZ2, L ,n+m,)

Implies:
— Construct high-D lattice from low-D lattice.
— We only consider linear labelling for 1-D baseline lattice R/



LNC Based on Gaussian Integer

* Gaussian integer Z[i] ={a+bz‘:a,bEZ}
e Discrete subring of the complex numbers.

Example.
Consider a lattice Z[i] and its sublattice BZ[i], where B=2+3/ (Gaussian integer).

A finite field F 5 is isomorphic to Z[i]/BZ]i].
The message space W=(Z[i] /BZ[i])¥

The shaping is a rotated hypercube in C" .

The encoder maps a message w=A+(Z[i]/BZ[i])* ’ ’ ’
into its coset leader. . .
The decoder uses the linear labellin .

8 (a) Z[7]

¢ (O ==L/ B1xP)+B, L, (= 1/ B1xB)+ B)



LNC Based on Gaussian Integer

Union bound Estimation (UBE) of the error probability for hypercube shaping

2 '
Pe<h,a>~1<(A/A')eXp(_ & (A/A) )
4NOQ(a9 a)
where Q(a,a) _ ‘0{‘2 + SNR Hah-auz

The effective noise is N Q(a, a).

The minimum inter-coset distance of A/A": d(A/N).

It is also called the length of the shortest vectors in the set difference A\’

The number of shortest vectors: K(A/N\’)

The kissing number.



LNC Based on Gaussian Integer

Union bound Estimation (UBE) of the error probability

2 !
P(h,a)=K(A/A')exp| - a’(ATA)
4N0Q(a9a)
"Y3SENR
IV A= m)

The normalized signal-to-effective-noise ratio

SENR_ = SEI;IR _ RSNR
2 2°0(a, a)

The nominal coding gain:
_d*(A/N)

V(A)l/n

y.(A/A)

Measures the increase in density of A over the baseline uncoded hypercube lattice.
The nominal coding gain for the baseline system is O dB.



LNC Based on Eisenstein Integer

Eisenstein integer Z[w]={a+bw:a,bEZ} W=(—1+J?3)/2

Z[w] forms a PID.

Lattice partitions over Z[w] enrich the candidates of finite fields.
It has six Eisenstein units.

The Voronoi region of Z[w] lattice is a regular hexagon (better shaping region).
It has efficient division algorithms, essential for practical encoder/decoder.
Optimum lattice/packing in 2-D.




LNC Based on Eisenstein Integer

Example.
Consider a lattice Z[w] and its sublattice rZ[w], where r=4+3w (Eisenstein integer).
A finite field F 5 is isomorphic to Z[w]/rZ[w].
The message space W=(Z[w]/rZ[w])*
The shaping is a rotated product of n regular hexagons inC" .

A
n ® o o |e o o o o
e o B ¢ o o o o o
ooooo o o
ooooo A © o o o o
" A A|A A
S >
e A A|A A u
ooooo A o o o o o
® o B o o | o o o o
oooooo [ ] o
ooooo u

(b) Z| o]



LNC Based on Eisenstein Integer

Quantizer of a complex value x to an Eisenstein Integer
D, (x)= argmin{‘x - B, 2}

B =|Ref{x}] +v/-3|Im{x}/~/3]
B, =|Refx - w}] ++/=-3|Im{x - w} /3] +w

For lattice partition Z[w]/rZ[w], the encoder €: W->A=Z[w] uses a division
algorithm.

Example.
Consider the lattice Z[w] and its sublattice rZ[w]. "
When r=2, F, is isomorphic to Z[w]/2Z[w]. = = m A = =

W={0+rZ[w], 1+rZ[w], w+rZ[w], 1+w+rZ[w]}. —— %A —h—=—=

One possible encoder: E E = ® ®E =
E(W)={O, -11 -W, 1+W} | [ | [ | [ [ | [




LNC Based on Eisenstein Integer

Theorem: Union bound Estimation (UBE) of the error probability

P(h, a)zK(A/A')exp(_ d(A/A) )

4N0Q(0{, a)
where

O(a,a) = \af + SNR|h - aH2

The minimum inter-coset distance of A/A’: d(A/N).

It is also called the length of the shortest vectors in the set difference A\’

The number of shortest vectors: K(A/N’)
The kissing number.



LNC Based on Eisenstein Integer

Corollary: Union bound Estimation (UBE) of the error probability

P, (h, a)”"‘K(A/A’)GXp(— d*(A/A) )

4NOQ(a9 a)
y (A Ay (A/A)3SENR )
2

=K(A/A')exp(—

The normalized signal-to-effective-noise ratio

SENR = SEI;IR _ RSNR
2 2°0(a, a)

The nominal coding gain:
_d*(A/N)

V(A)l/n

y.(A/A)

Measures the increase in density of A over the baseline uncoded hypercube lattice.



LNC Based on Eisenstein Integer

Corollary: Union bound Estimation (UBE) of the error probability

2 '
P(h,a)=K(A/A)exp| - a’(ATA)
4NOQ(a9a)
KA Ao _yc(A/A)n(Az/ABSENRm)

Second Moment (average energy per dimension of a uniform PDF):
e o W
P(A) —fy7p(X)dX —ﬁmdx
Normalized Second Moment
(dimensionless, invariant to scaling, orthogonal transformation and Cartesian products):
P(A)

G(A) = V(A)l/n

The shaping gain:

1/n
v (AN = G(hypercube) _ 176 V(A)

G(A) G(A)  6P(A)

Measures how much less is the average energy of A relative to a hypercube.




LNC Based on Eisenstein Integer

Consider LNC based on Eisenstein integer B and lattice partition Z[w]/BZ[w]

The baseline system has a nominal coding gain

7.(A/A)=23/3=0625dB
The shaping gain

y (A/A)=33/5=0.167dB

Corollary:
For an LNC by complex construction A over Z[w]/niZ[w], where 1t is an Eisenstein prime,
the nominal coding gain based

23 wi™(0)

3 ‘E‘Z(l—k/n)
Union bound Estimation (UBE) of the error probability

9 wi™ (C)SENR

y.(A/A) =

norm

P (h,a)=K(A/A')exp

‘E‘Z(l—k/n)



LNC Based on Eisenstein Integer

Compare two LNC baseline systems’ performance
Two transmitter and a single relay.

Eisenstein prime r and lattice partition Z[w]/rZ[w]
Gaussian prime B and lattice partition Z[i]/BZ]i]

-© -F13 Z[
—e—F13 Z[w]

- % =F37 Z[]
“— F37 Z[w)

- & - F612[]
F61 Z[w)

Average error probability

SNR (dB)



LNC Based on Eisenstein Integer

Design Examples (maximize the coding gain)

Convolutional codes with rate % over lattice partition Z[i]/BZ[i], B=2+3i

[1+2D, 2+(1+i)D] 2.22 (3 36 dB) 8
2 [14D+2iD?, (-1-i)+(-1+i)D+(-1-1) D] 3.33 (5.22 dB) 12 4

Convolutional codes with rate % over lattice partition Z[w]/rZ[w], r=4+3w

[1+D, (-1+w)+(2+w)D] 2.56 (4 09 dB) 8
2 [1+D+(-1+w)D?, (-1+w)+(1-w)D+(1+w)D?] 3.84 (5.85 dB) 12 24
: A ; L] . . : L J .-. .A.A A.A. L J L J L J
Bl A A o - A AA A =4 -
(a) Z[7]



Summary

 Reviewed physical-layer network coding and compute-and-forward
* |Investigated the lattice network coding based on Eisenstein integer
* Quantizer/encoding algorithms

* Derived Union bound estimation in a unified way

A few code examples

LNC based on Eisenstein integer has a high nominal coding and shaping gain.

Open problems:

e Lattice-reduction algorithms to find optimal combination coefficients
e Design more power codes
e Other Lattice Constructions (Construction D algorithm)
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